Curve Your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models

Authors: Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel

NeurIPS 2023 | Conference PDF | Archive PDF | Plain Text | LLM Run Details

Reproducibility Variable Result LLM Response
Research Type Experimental We validate the effectiveness of our regularizer in experiments on synthetic as well as real-world datasets for time series and tabular data.
Researcher Affiliation Collaboration Julien Siems University of Freiburg siemsj@cs.uni-freiburg.de Konstantin Ditschuneit* Scenarium AI ko.ditschuneit@gmail.com Winfried Ripken* Merantix Momentum winfried.ripken@merantix.com Alma Lindborg* Merantix Momentum alma.lindborg@merantix.com Maximilian Schambach Merantix Momentum maximilian.schambach@merantix.com Johannes S. Otterbach nyonic johannes@nyonic.ai Martin Genzel Merantix Momentum martin.genzel@merantix.com
Pseudocode No The paper does not include any structured pseudocode or algorithm blocks.
Open Source Code Yes 1Code: https://github.com/merantix-momentum/concurvity-regularization
Open Datasets Yes Boston Housing [23], California Housing [37], Adult [18], MIMIC-II [29], MIMIC-III [27] and Support2 [14].
Dataset Splits Yes We sample 10,000 datapoints from the model and use 7,000, 2,000, 1,000 for training, validation and testing respectively. We use the validation split to find adequate hyperparameters via a small manual search.
Hardware Specification Yes The results are shown in Figure 10, all obtained with an M1 Mac Book Pro.
Software Dependencies No The paper mentions several software components and libraries like "Adam W optimizer", "Cosine Annealing", "py GAM", "Optuna", "TensorFlow", "JAX", and "PyTorch", but it does not specify their version numbers.
Experiment Setup Yes The hyperparameter space and default parameters are shown in Table 1 and the hyperparameters per dataset are shown in Figure 7. (Table 1 includes Learning Rate [1e-4, 1e-1], Weight Decay [1e-6, 1], Activation [ELU, GELU, Re LU], # of neurons per layer [2, 256], # of hidden layers [1, 6], Num. Epochs [10, 500])