Multimarginal Generative Modeling with Stochastic Interpolants

Authors: Michael Samuel Albergo, Nicholas Matthew Boffi, Michael Lindsey, Eric Vanden-Eijnden

ICLR 2024 | Conference PDF | Archive PDF | Plain Text | LLM Run Details

Reproducibility Variable Result LLM Response
Research Type Experimental We demonstrate these capacities with several numerical examples.
Researcher Affiliation Academia Michael S. Albergo Center for Cosmology and Particle Physics New York University New York, NY 10003, USA albergo@nyu.edu; Nicholas M. Boffi Courant Institute of Mathematical Sciences New York University New York, NY 10012, USA boffi@cims.nyu.edu; Michael Lindsey Department of Mathematics University of California, Berkeley Berkeley, CA 94720, USA lindsey@math.berkeley.edu; Eric Vanden-Eijnden Courant Institute of Mathematical Sciences New York University New York, NY 10012, USA eve2@cims.nyu.edu
Pseudocode Yes Algorithm 1: Learning each ˆgk
Open Source Code No The paper does not provide a direct link to a source-code repository or an explicit statement about releasing the code for the described methodology.
Open Datasets Yes MNIST dataset, AFHQ-2 animal faces dataset (Choi et al., 2020), Oxford flowers dataset (Nilsback & Zisserman, 2006), and Celeb A dataset (Zhang et al., 2019).
Dataset Splits No The paper does not provide specific details on training, validation, and test dataset splits (e.g., percentages, sample counts, or splitting methodology).
Hardware Specification No Table 2 mentions '# GPUs 2 8' but does not specify the models or other detailed hardware specifications.
Software Dependencies No The paper mentions using a 'U-Net architecture' but does not list specific software dependencies with version numbers.
Experiment Setup Yes Table 2: Hyperparameters and architecture for image datasets.